Top 10 Ideas for Teaching the Weather

Make a cloud in a bottle – use it to remind students about the water cycle, the fact that pressure is related to temperature, that the air has to cool for water droplets to form and that the energy released by water droplets forming is the energy source for developing storms. You can find some instructions here.

Cloud in a bottle

Teabag rocketDemonstrate a teabag rocket to remind students that warm air rises. You can find the instructions here.

Bubble chaseDo some weather fieldwork. Have a look at our top 10 ideas or the fieldwork page.

 

From when you start teaching the weather topic, to the end of the year, ask one member of the class each week to prepare a local weather forecast for the class. At the start, these might just be a summary of the weather forecast from the TV/ radio/ internet. By the end, they should show some understanding of air masses and depressions and why we are getting the weather we are.


Weather map

Global map of winds

snowIn the winter, particularly before Christmas, investigate the factors which determine Will it snow?.

Depressions, Anticyclones and Fronts

Passage of a Depression – interactive animation

Worksheet to accompany the animation.

For 11+

Depressions from our Weather and Climate teacher’s guide

Pop-up depression

Cold and Warm fronts activities for differentiation and revision

Finding weather features on a simple synoptic chart

Red sky at Night, Shepherd’s Delight worksheet and Teacher’s Notes – a resource looking at how our prevailing wind direction means this saying is largely true.

Depressions Taboo

Depressions case study template and example of Storm Eunice – collect and annotate weather charts for a named storm, weather warnings and impacts of the storm. 

For 14+

Weather systems PowerPoints and cross section practice

Using WOW data to investigate a depression passing across the UK with  worksheets for students including isoline drawing practice.

Anticyclones, depressions and fronts with student worksheets 

Depressions and anticyclones with a synoptic chart exercise

A case study of orographic rainfall in Scotland.

What is the weather? Work out what the weather is like at several UK locations based on some simplified weather maps.

Interpreting weather charts basic information on synoptic charts, with Isotherm map exercise and Synoptic chart exercise.

Isotherm and Isobar drawing exercise based on a depression on our contour resources page.

For 16+

Microclimates

Find out about how to borrow weather instruments in order to be able to carry out a microclimate investigation with your school here, or more about urban heat islands here

What are microclimates?
What are the different types of microclimates?
What is an urban microclimate?
Urban precipitation
Smog
Urban winds
 

What are microclimates?

A microclimate is the distinctive climate of a small-scale area, such as a garden, park, valley or part of a city. The weather variables in a microclimate, such as temperature, rainfall, wind or humidity, may be subtly different from the conditions prevailing over the area as a whole and from those that might be reasonably expected under certain types of pressure or cloud cover. Indeed, it is the amalgam of many, slightly different local microclimates that actually makes up the microclimate for a town, city or wood.

It is these subtle differences and exceptions to the rule that make microclimates so fascinating to study, and these notes help to identify and explain the key differences which can be noticed by ground-level observations.

What are the different types of microclimates?

In truth, there is a distinctive microclimate for every type of environment on the Earth’s surface, and as far as the UK is concerned they include the following:

Upland regions

Upland areas have a specific type of climate that is notably different from the surrounding lower levels. Temperature usually falls with height at a rate of between 5 and 10 °C per 1000 m, depending on the humidity of the air. This means that even quite modest upland regions, such as The Cotswolds, can be significantly colder on average than somewhere like the nearby Severn Valley in Gloucestershire.

Occasionally, a temperature inversion can make it warmer above, but such conditions rarely last for long. With higher hills and mountains, the average temperatures can be so much lower that winters are longer and summers much shorter. Higher ground also tends to be windier, which makes for harsher winter weather. The effect of this is that plants and animals are often different from those at low levels.

Hills often cause cloud to form over them by forcing air to rise, either when winds have to go over them or they become heated by the sun. When winds blow against a hill-side and the air is moist, the base of the cloud that forms may be low enough to cover the summit. As the air descends on the other (lee) side, it dries and warms, sometimes enough to create a föhn effect. Consequently, the leeward side of hills and mountain ranges is much drier than the windward side. The clouds that form due to the sun’s heating sometimes grow large enough to produce showers, or even thunderstorms. This rising air can also create an anabatic wind on the sunny side of the hill. Sunshine-facing slopes (south-facing in the Northern Hemisphere, north-facing in the Southern Hemisphere) are warmer than the opposite slopes.

Apart from temperature inversions, another occasion when hills can be warmer than valleys is during clear nights with little wind, particularly in winter. As air cools, it begins to flow downhill and gathers on the valley floor or in pockets where there are dips in the ground. This can sometimes lead to fog and/or frost forming lower down. The flow of cold air can also create what is known as a katabatic wind.

Coastal regions

The coastal climate is influenced by both the land and sea between which the coast forms a boundary. The thermal properties of water are such that the sea maintains a relatively constant day to day temperature compared with the land. The sea also takes a long time to heat up during the summer months and, conversely, a long time to cool down during the winter. In the tropics, sea temperatures change little and the coastal climate depends on the effects caused by the daytime heating and night-time cooling of the land. This involves the development of a breeze from off the sea (sea breeze) from late morning and from off the land (land breeze) during the night. The tropical climate is dominated by convective showers and thunderstorms that continue to form over the sea but only develop over land during the day. As a consequence, showers are less likely to fall on coasts than either the sea or the land.

Around the Poles, sea temperatures remain low due to the presence of ice, and the position of the coast itself can change as ice thaws and the sea re-freezes. One characteristic feature is the development of powerful katabatic winds that can sweep down off the ice caps and out to sea.

In temperate latitudes, the coastal climate owes more to the influence of the sea than of the land and coasts are usually milder than inland during the winter and cooler in the summer. However, short-term variations in temperature and weather can be considerable. The temperature near a windward shore is similar to that over the sea whereas near a leeward shore, it varies much more. During autumn and winter, a windward shore is prone to showers while during spring and summer, showers tend to develop inland. On the other hand, a sea fog can be brought ashore and may persist for some time, while daytime heating causes fog to clear inland. A lee shore is almost always drier, since it is often not affected by showers or sea mist and even frontal rain can be significantly reduced. When there is little wind during the summer, land and sea breezes predominate, keeping showers away from the coast but maintaining any mist or fog from off the sea.

Forests

Tropical rainforests cover only about 6% of the earth’s land surface, but it is believed they have a significant effect on the transfer of water vapour to the atmosphere. This is due to a process known as evapotranspiration from the leaves of the forest trees. Woodland areas in more temperate latitudes can be cooler and less windy than surrounding grassland areas, with the trees acting as a windbreak and the incoming solar radiation being ‘filtered’ by the leaves and branches. However, these differences vary depending on the season, i.e. whether the trees are in leaf, and the type of vegetation, i.e. deciduous or evergreen. Certain types of tree are particularly suitable for use as windbreaks and are planted as barriers around fields or houses.

 

Urban regions

These are perhaps the most complex of all microclimates. With over 75% of the British population being classed as urban, it is no surprise that they are also the most heavily studied by students of geography and meteorology. Therefore, the rest of these notes focus on the various elements that constitute an urban microclimate.

What is an urban microclimate?

The table below summarises some of the differences in various weather elements in urban areas compared with rural locations.

Sunshine duration5 to 15% less
Annual mean temperature0.5-1.0 °C higher
Winter maximum temperatures1 to 2 °C higher
Occurrence of frosts2 to 3 weeks fewer
Relative humidity in winter2% lower
Relative humidity in summer8 to 10% lower
Total precipitation5 to 10% more
Number of rain days10% more
Number of days with snow14% fewer
Cloud cover5 to 10% more
Occurrence of fog in winter100% more
Amount of condensation nuclei10 times more

Urban heat islands

Marked differences in air temperature are some of the most important contrasts between urban and rural areas shown in the table above. For instance, Chandler (1965) found that, under clear skies and light winds, temperatures in central London during the spring reached a minimum of 11 °C, whereas in the suburbs they dropped to 5 °C.

Indeed, the term urban heat island is used to describe the dome of warm air that frequently builds up over towns and cities.

The formation of a heat island is the result of the interaction of the following factors:

  • the release (and reflection) of heat from industrial and domestic buildings;
  • the absorption by concrete, brick and tarmac of heat during the day, and its release into the lower atmosphere at night;
  • the reflection of solar radiation by glass buildings and windows. The central business districts of some urban areas can therefore have quite high albedo rates (proportion of light reflected);
  • the emission of hygroscopic pollutants from cars and heavy industry act as condensation nuclei, leading to the formation of cloud and smog, which can trap radiation. In some cases, a pollution dome can also build up;
  • recent research on London’s heat island has shown that the pollution domes can also filter incoming solar radiation, thereby reducing the build up of heat during the day. At night, the dome may trap some of the heat from the day, so these domes might be reducing the sharp differences between urban and rural areas;
  • the relative absence of water in urban areas means that less energy is used for evapotranspiration and more is available to heat the lower atmosphere;
  • the absence of strong winds to both disperse the heat and bring in cooler air from rural and suburban areas. Indeed, urban heat islands are often most clearly defined on calm summer evenings, often under blocking anticyclones.
Urban pollution dome and plume
Urban pollution dome and plume

The precise nature of the heat island varies from urban area to urban area, and it depends on the presence of large areas of open space, rivers, the distribution of industries and the density and height of buildings. In general, the temperatures are highest in the central areas and gradually decline towards the suburbs. In some cities, a temperature cliff occurs on the edge of town. This can be clearly seen on the heat profile below for Chester.

Urban heat island in Chester
Urban heat island in Chester

Urban precipitation

As noted previously, the greater presence of condensation nuclei over urban areas can lead to cities being wetter and having more rain days than surrounding rural areas. Indeed, it was often said that Rochdale, the famous mill town, had significantly smaller amounts of rain on Sundays when the town’s factories were closed.

However, other factors play a major role, especially the heat islands. These can enhance convectional uplift, and the strong thermals that are generated during the summer months may serve to generate or intensify thunderstorms over or downwind of urban areas. Storms cells passing over cities can be ‘refuelled’ by contact with the warm surfaces and the addition of hygroscopic particles. Both can lead to enhanced rainfall, but this usually occurs downwind of the urban area.

Smog

Smogs were common in many British cities in the late 19th and early 20th centuries, when domestic fires, industrial furnaces and steam trains were all emitting smoke and other hygroscopic pollutants by burning fossil fuels. The smogs were particularly bad during the winter months and when temperature inversions built up under high pressure, causing the pollutants to become trapped in the lower atmosphere and for water vapour to condense around these particles.

One of the worst of these ‘pea-soup fogs’ was the London smog of the winter of 1952/53. Approximately 4,000 people died during the smog itself, but it is estimated that 12,000 people may have died due to its effects. As a result, the Clean Air Act of 1956 was introduced to reduce these emissions into the lower atmosphere. Taller chimney stacks and the banning of heavy industry from urban areas were just two of the measures introduced and, consequently, fewer smogs were recorded in the UK during the 1960s and 1970s.

Research in the 1990s has shown, however, that another type of smog – photochemical – is now occurring in some urban areas as a result of fumes from car exhausts and the build up of other pollutants in the lower atmosphere which react with incoming solar radiation. The presence of a brown-coloured haze over urban areas is an indication of photochemical smog, and among its side effects are people experiencing breathing difficulties and asthma attacks.

Urban winds

Tall buildings can significantly disturb airflows over urban areas, and even a building 100 metres or so high can deflect and slow down the faster upper-atmosphere winds. The net result is that urban areas, in general, are less windy than surrounding rural areas.

However, the ‘office quarter’ of larger conurbations can be windier, with quite marked gusts. This is the result of the increased surface roughness that the urban skyline creates, leading to strong vortices and eddies. In some cases, these faster, turbulent winds are funnelled in between buildings, producing a venturi effect, swirling up litter and making walking along the pavements quite difficult.

Web page reproduced with the kind permission of the Met Office

Weather Projects

Introduction

Project ideas:

1. How accurate are weather forecasts for my local area?
2. A survey of how the temperature changes in my back garden
3. An analysis of temperature patterns across a town/city
4. How do wind patterns vary around a large building?
5. How do temperatures vary inside and outside a woodland area?
6. How much precipitation is intercepted in a woodland area?
7. How does the weather change as a depression/warm front/cold front passes over?
8. A study of the shelter effect of trees/hedges
9. How do air temperatures change as you move up a hillside?
10. How do temperatures change as you move inland from the sea/coast

Introduction

These pages give practical advice for pupils and teachers on weather-related projects that could be undertaken. In addition, there is general guidance and advice on equipment that pupils can use at home, at school or out in the field.

General points for teachers when giving advice on weather-related projects

It is always a good idea to encourage more able pupils by adding in the variables of seasonal change or different pressure patterns. Even the simplest project, such as Project 1 on weather forecasts, can be extended to see if the forecasts become more accurate under high pressure.

Practice runs beforehand are ideal and strongly recommended – they give pupils valuable practice with unfamiliar equipment and can help to both identify and iron out potential problems at certain sites. From experience, this gives pupils scope for making extremely good points in the evaluation section of their project.

A 10- to 14-day collection period is advised for many of these projects. Less than 10 days can cause problems with abnormal readings. If the pupils are prepared to take readings for up to 21 days, then let them do so.

The use of maximum-minimum thermometers is the one area where erroneous data can be produced. In theory, their use should be straightforward, but in practice, pupils may not read from the right place, or reset the thermometers. These points should be stressed, especially if their friends or family are making the readings – do not assume that parents know how to use the maximum-minimum thermometer either.

Measuring precipitation using a manufactured rain gauge is no problem, but these can be expensive. In any case, many pupils prefer to make their own, but their design can lead to difficulties. Refer the pupils to Met Office guidelines on the correct size and conversion formulae (they are also in good textbooks). Pupils frequently use large plastic bottles, but both these and milk bottles may not be wide enough, so suggest a funnel is placed inside to make a wider opening – ideally it should be at least 125 mm in diameter. The collecting vessels should be designed to allow regular emptying and should be robust enough to withstand regular handling. If they split, leakage will occur and ruin the results. Pupils should be made aware of all these points and that even family pets can cause damage to the vessels.

With some of these projects, especially numbers 2, 4, 5, 6 and 8, pupils might want to consider the use of a control station. This can be used to spot sources of irregularities, and faulty equipment can be recalibrated. The school’s weather station or Stevenson screen is ideal for this. Having such a control will allow pupils to comment on their evaluation about having a real scientific method, and checking for sources of error in their observations.

If a standard household thermometer is being used, remember that it can take up to 15 minutes to settle and record the actual temperature at the site. When measuring wind speed, pupils should remember that gusts and lulls can occur. Holding up the anemometer for up to a minute or two can help to overcome this, and an average speed calculated for that period. If readings are being made alongside a busy road, the pupils should also remember that large vehicles can cause sudden gusts.

If there is no access to a good quality anemometer, you can buy ventimeters from sailing shops. These can give good readings.

1. How accurate are weather forecasts for my local area?

Equipment needed

A simple thermometer, anemometer (and compass?) and cloud recognition chart.

Pupil’s notes

This project involves collecting weather data each day, for a 10- to 14-day period, and comparing your readings with forecasts in the local newspaper or on web sites. Around midday you should record the air temperature, weather conditions, cloud cover, cloud type, wind speed and wind direction. If you have an automatic weather station at your school, you can use these readings and make your own observations on clouds and weather conditions. You should keep the weather forecasts that have been made, compare them each day with your readings, and then work out how accurate the forecasts have been. At the end of the time period, you can work out the overall accuracy level, and then suggest reasons for any differences.

accuracy

Teacher’s notes

In essence, this is a very simple project, but one which able pupils can extend by explaining the discrepancies between observations and forecasts, e.g. fronts moving faster than expected, the impact of local topography and the shelter effect of hills.

2. A survey of how the temperature changes in my back garden

Equipment needed

At least two thermometers – one for ground temperatures, and the other for air temperatures at 1.2 metres above the ground (possibly on a post). An anemometer (and compass?) would also be useful.

Pupil’s notes

This is a detailed survey of how temperature changes in your garden. You need to collect data each day (or even twice a day) for a 10- to 14-day period, recording the air and ground temperatures. You could also make a note of cloud cover and wind speed/direction. Cloud cover will help you explain unusual changes, e.g. temperatures may drop if skies have been clear at night. Similarly, knowing wind speed and especially direction, will help you explain temperature changes in terms of the prevailing air mass. If you are only measuring data at one place, you should take care to avoid shaded areas of your garden. You could set up several measuring points and see how temperature varies around your back garden, and then draw a chloropleth or isoline map to show the differences and patterns. Having more than one collection point would also allow you to calculate a daily average for your garden. Another extension would be collecting data twice a day, e.g. at 8 a.m. and 6 p.m.

Teacher’s notes

Pupils should use maximum-minimum thermometers and a fairly sensitive anemometer, but great care is needed in resetting the thermometers. More able candidates could collect weather maps from a broadsheet newspaper or the images and charts from the Met Office web site, and then relate the temperature changes to the passage of frontal systems across the area. Dramatic temperature changes can also occur under a blocking anticyclone where temperature inversions and ground frosts regularly develop. Pupils should therefore be encouraged to take careful note of the cloud cover and whether a ground frost occurs.

3. An analysis of temperature patterns across a town/city

Equipment needed

A digital thermometer or probe.

Pupil’s notes

Temperature changes across an urban area, and this project involves looking at these subtle changes, caused by different types of buildings or open spaces. You should make a transect across the urban area (from north to south, or east to west) taking readings at regular intervals every 500 metres, or you can choose a variety of locations all over the urban area. Ideally, you should have 10-15 sites which you can visit on foot, by bike or in a parent’s car. At each site, you should record the air temperature, holding your digital thermometer at the same height above the ground at each site. You should also make a description of the site – densely built up, low-density housing with gardens, open space, etc. You should repeat your survey at the same time over the next two or three days. Remember, you are not really after an average for each site, but checking whether the temperature changes in the same way at each site at different times. You can extend this project by visiting each site early in the morning, around noon and in the late afternoon.

Teacher’s notes

Help may be needed in deciding on the choice of observation site and direction of transect. The timing of the transect is also an important consideration, as urban heat islands are often most sharply defined in the early evening. Also remember that strong winds can equalise differences, so suggest that calm days are chosen. A basic household thermometer, or maximum-minimum thermometer should not be used, unless of course it is left at each site – help from school friends and relatives is a possibility. Digital thermometers will be the most accurate. Pupils could also collect weather maps from a broadsheet newspaper or the images and charts from the Met Office web site. Dramatic temperature changes can occur under a high-pressure system with little cloud cover, so that temperature inversions develop. Pupils should therefore be encouraged to take careful note of the cloud cover at the time of their transect. Very interesting patterns can be found if the transect crosses the central business district or a river valley. If the survey is being undertaken in a small town or large village, this project could be extended using data-collection points in the rural areas, so that differences between urban and rural areas are noticeable.

4. How do wind patterns vary around a large building?

Equipment needed

A good anemometer (and compass?).

Pupil’s notes

Wind speeds and directions can vary dramatically around buildings, especially tall tower blocks, large sports stadia or public buildings such as cathedrals. The wind can increase and swirl in unusual eddies as the air passes over and around the obstructions. You should identify a number of sites – 10 or 12 would be ideal – and try to get an even coverage around the building. Visit each site in turn, making a note of the wind direction and speed. You should try to visit the sites on mornings and/or afternoons for several days (possibly for up to a week). Although you can take an average wind speed and average direction for each data collection, it is even more interesting to notice the changes around the building, and you could answer the following questions. Where are wind speeds above average, and below average? Are the strongest winds always in the same place? In addition, the wind direction readings might help you spot where eddies are strongest.

well graph

Teacher’s notes

The key to this project is having a sensitive enough and/or fairly sophisticated anemometer. Some of the basic ones will not adequately measure light breezes. Having said this, very good results can be obtained near tower blocks, and more able pupils might be able to study the venturi effects produced, or the problems these faster winds cause, e.g. blowing litter around and low-level pollution. This project is very effective in winter and spring when low-pressure systems cross the country. It can be less effective under high pressure, so if the pupils are making these surveys in the summer holidays they should be made aware of these difficulties. This will prevent the embarrassment of them returning to school in August or September saying that the project did not work, or that there were never any winds! Speeds should be recorded in metres per second rather than by the Beaufort scale.

5. How do temperatures vary inside and outside a woodland area?

Equipment needed

Several maximum-minimum thermometers. At each site, you will need one for ground temperatures, and another for air temperatures at 1.2 metres above the ground (possibly on a post). You could use a digital thermometer rather than use several maximum-minimum thermometers. You can also use a light meter (see pupil’s notes).

Pupil’s notes

Air and ground temperatures will vary inside and outside a wood because of the vegetation and shade. To see how these change, choose one area inside the wood, and another up to 100 or 200 metres away, well out of shade. You should measure ground and air temperatures at each site over a 10- to 14-day period. If you are using a maximum-minimum thermometer, just one visit a day will be needed, whereas a digital thermometer will need reading each day at about 8 a.m. and at 6 p.m. It would also be useful to record the weather patterns and cloud cover at the time of the readings, as this may help explain unusual patterns, e.g. low temperatures early in the morning under clear skies. If you are using a digital thermometer, you could make a transect across the wood, taking readings every 50 metres or so. The vegetation also filters the solar radiation so that light intensity changes inside a wood. This can be measured using a light intensity meter or the light meter on a camera – if the latter is chosen, set the aperture to f8 and point the camera at the same object each time (a clipboard will suffice). The shutter speed will give a surrogate measure of light intensity, as the faster the shutter speed, the greater the light intensity.

Teacher’s notes

In order to obtain decent results, a fairly large copse or wood should be chosen, and the pupil should check that they can gain access beforehand. Maximum-minimum thermometers are ideal, but if they are not available, a digital thermometer can be used to record ‘real-time’ temperatures. This will entail the pupil visiting the sites at roughly the same time each day over the period – again an important fact that they need to be aware of before starting. From experience, maximum-minimum thermometers give more flexibility. More able candidates could also collect weather maps from a broadsheet newspaper or the images and charts from the Met Office web site. These will help explain any dramatic temperature changes that might occur under a blocking anticyclone, where temperature inversions and ground frosts regularly develop. Pupils should therefore be encouraged to take careful note of the cloud cover and whether there is a ground frost when they make their observations. If the readings are being made in a large wood, it is a good idea to encourage pupils to choose a variety of sites within the wood. Another extension is to compare the measurements from a wooded area with a variety of non-woodland sites, e.g. back garden, at school or in a built-up area. This could also lead to a more detailed project on temperature differences between urban and rural areas.

6. How much precipitation is intercepted in a woodland area?

Equipment needed

A simple rain gauge or collecting device. A simple thermometer might also be used (see pupil’s notes).

Pupil’s notes

Trees intercept rainfall, so this project is a variation on Project 5, whereby you need to place a number of rain gauges in and outside a woodland. You should choose a number of sites inside the wood, and at least one up to 100 or 200 metres away, well out of any shade. You should then measure the amount of rainfall at each site over a 10- to 14-day period. You could make readings several times a day if there is heavy rain. If so, it might be useful to monitor the temperature as well as cloud cover and type – these readings will help you work out if the rain is associated with the passage of a warm or cold front, etc. If your school has an automatic weather station with an electronic rain gauge, you can use this to work out the approximate time of your storm, the intensity and its duration. This will all help you answer questions such as whether more or less interception takes place in longer or heavier storms.

Kids rain gauge

Teacher’s notes

Potentially this can be a very good project, but problems can occur, chiefly with vandalism or the knocking over of the rain gauges. In addition, the summer months should be avoided as, in theory, there should be less rain! This is a good project at Easter or during the late spring when the trees are in leaf and there is a greater potential for interception. More-able pupils might nevertheless want to see how interception varies during the year, or in different seasons, and from experience, some very good projects have been undertaken on this topic. Another practical difficulty is that in very heavy storms, leaves are often battered down by the fast-falling raindrops. The best results are often obtained in steady rain.

7. How does the weather change as a depression/warm front/cold front passes over?

Equipment needed

Thermometers (preferably maximum-minimum), an anemometer (plus compass?), a cloud recognition chart and a barometer.

Pupil’s notes

Subtle changes occur in weather patterns as mature depressions move across Britain, especially with the passage of warm and cold fronts (plus occluded fronts), as well as the warm and cold sectors. You can observe these changes by setting up an observation station in your back garden or by using the school weather station or Stevenson screen. If you are making observations at home, take care to avoid shady areas in your back garden. To do this project effectively you should keep a close eye on weather charts in local or national newspapers, or the images on web sites, in order to see roughly when the depression and fronts will cross your home region. You will then need to carefully monitor the changes in air pressure, air temperatures, cloud cover, cloud type, wind speed, wind direction and weather conditions. Ideally, you should try to make recordings every two hours during a two- or even three-day period as the low-pressure system passes over. Satellite images and synoptic charts on the Met Office web site could be printed off to help explain the changes you observed in the weather patterns.

temp rain chart

Teacher’s notes

This is another project where data collection is quite straightforward, although accurate thermometers are needed, hence the preference for a digital one. Having said this, the regularity of making observations is crucial. Taking readings just twice or three times a day may not be sufficient. It is important that the pupils look at, and keep, the synoptic charts and weather maps from the broadsheets or web sites. More-able pupils should be able to see whether their changes fit the textbook models, and then explain any discrepancies. Another extension would be to add a rain gauge to measure precipitation as the fronts pass over. The regularity of data collection, every two hours, can be a difficulty, especially the night and early morning readings. Therefore, the data from the school’s automatic weather station can be substituted, with the pupils still collecting primary data by noting cloud cover, cloud type and weather conditions.

8. A study of the shelter effect of trees/hedges

Equipment needed

A digital thermometer or several thermometers, preferably maximum-minimum. At each site you will need two thermometers – one for ground temperatures, and the other for air temperatures at 1.2 metres above the ground (possibly on a post).

Pupil’s notes

Trees and hedges can have a shelter effect, causing temperatures, especially close to the ground, to change in a subtle way. For this project you should choose an area with woodland or one with thick, mature hedges. You could use your garden if it is quite large. Set up a line of evenly spaced measuring points where, if you are using maximum-minimum thermometers, you should place your measuring posts. Six or eight posts moving away from the hedge, or if possible on both sides of the hedge will be needed. Remember to ask permission to place these beforehand! If you are using a digital thermometer, place wooden pegs in the ground so you always measure at the same place. Take readings over a 10- to 14-day period at each observation post – if you are using a maximum- minimum thermometer, only one daily reading is needed, but if you are using a digital thermometer, you need to take readings around 8 a.m. and 6 p.m. It is also useful to make a note of cloud cover, as temperatures can fall very low under clear skies. Remember that it is the differences between air and ground temperatures at each site and as you move away from the obstacle, that are important, so take great care to read your thermometers accurately, and do not round up the temperatures on digital displays.

Teacher’s notes

This can be a really good project in a rural area or for pupils who live on farms. The choice of a back garden is adequate, as long as it is a good-sized one. If so, this could be combined with Project 2, to produce an isoline map of temperatures across a back garden, showing the shelter affect. More-able candidates could also collect weather maps from a broadsheet newspaper or the images and charts from the Met Office web site. These will help explain any dramatic temperature changes that might occur under a blocking anticyclone where temperature inversions and ground frosts regularly develop. Pupils should therefore be encouraged to take careful note of the cloud cover and whether there is a ground frost when they make their observations.

9. How do air temperatures change as you move up a hillside?

Equipment needed

A digital thermometer, while an anemometer and hygrometer are optional extras (see pupil’s notes).

Pupil’s notes

Air temperature decreases steadily as altitude increases, therefore a transect up a hillside or upland area can identify these changes. You will need 10-12 sites up the hillside, or along a main road. Ideally they should be at regular height intervals, so plot these beforehand using an Ordnance Survey map. Visit each site on foot, by bike, or in a parent’s car, and at each location accurately measure the air temperature, taking care not to round up the temperatures on the digital displays and trying to hold the digital thermometer at the same height above the ground at each location. You may find it useful to make a note of wind speeds and directions, because these may influence the changes, e.g. a cold down-valley wind. When you have finished, you can draw a scattergraph, showing the temperature changes, or thermal gradient, for your transect. You should repeat your transect several times, so that you can draw a series of thermal gradients, seeing whether the changes are always at the same rate between each site. It would also be worthwhile knowing the relative humidity for the area – this is because the amount of water vapour in the air can influence the rate of temperature change (ask your teacher to explain this!). So if you have access to a hygrometer it would be worth noting the readings. If not, use the information from your school’s automatic weather station or Stevenson screen. Some web sites also carry readings on relative humidity that you could use as well.

Teacher’s notes

This can be a very stimulating and interesting project, and a fruitful extension would be to measure temperatures on both the leeward and windward sides of the upland area. On the leeward slopes, a simple Föhn effect can sometimes be observed. It is essential that pupils do not round up the readings to whole degrees – going to two decimal places is a real bonus! More-able candidates should also be encouraged to gather the weather maps from a broadsheet newspaper or the images and charts from the Met Office web site for the days when they are making their transect. These will help explain any dramatic temperature changes that might occur under a blocking anticyclone where temperature inversions might affect the results, especially at the foot of the slope, so that for a while temperature increases with altitude. More-able pupils will also link humidity data with the lapse rates, and whether the saturated adiabatic lapse rate or the dry adiabatic lapse rate prevails.

10. How do temperatures change as one moves inland from the sea/coast?

Equipment needed

A digital thermometer and an anemometer (plus compass?).

Pupil’s notes

Air temperature changes as you move inland away from the sea, a large lake or reservoir. Water bodies can have a cooling effect in the summer months, and a warming effect in the winter. However, the patterns are influenced by the onshore or offshore breezes. This project requires a transect to be made inland away from the water body or coast. You will need 10-12 sites, possibly along a main road running away from the coast. Ideally they should be at regular height intervals, so plot these beforehand using an Ordnance Survey map. Visit each site on foot, by bike, or in a parent’s car, and at each location accurately measure the air temperature and the wind speed and direction. Take care not to round up the temperatures on the digital displays, and try to hold the digital thermometer and anemometer at the same height above the ground at each location. When you have finished, you can draw a scattergraph, showing the temperature changes, as well as a wind rose, for your transect. You should repeat your transect several times at roughly the same time of day, so that you can draw a series of thermal gradients, seeing whether the changes are always at the same rate between each site, and whether they differ depending on the type of breeze and its strength. Alternatively, you could repeat your transect several times a day to see the daily (diurnal) changes as the land or sea warms up and cools down.

Teacher’s notes

From experience, this is another good project for the summer months, or the mid-winter, and some very interesting patterns can occur under high pressure. Very good results can also be found if the transect is repeated at different times of the day, or year. It is important though for pupils to recognise the subtle differences between local breezes and the more-general prevailing winds – local breezes can create interesting small-scale patterns. Once again, pupils should be encouraged to gather the weather maps from a broadsheet newspaper or the images and charts from the Met Office web site for the days when they are making their transect. These will help to relate the micro-scale changes to the macro-scale patterns.

Web page reproduced with the kind permission of the Met Office

Case Study – Heatwave

The heatwave of 2003

More than 20,000 people died after a record-breaking heatwave left Europe sweltering in August 2003. The period of extreme heat is thought to be the warmest for up to 500 years, and many European countries experienced their highest temperatures on record.

Physical Impacts

Effects of the heatwave

Immediate responses to the heatwave

What happened to cause the heatwave?

Physical Impacts

Low river flows and lake levels
The River Danube in Serbia fell to its lowest level in 100 years. Bombs and tanks from World War 2, which had been submerged under water for decades, where revealed, causing a danger to people swimming in the rivers. Reservoirs and rivers used for public water supply and hydro-electric schemes either dried up or ran extremely low.

Forest fires
The lack of rainfall meant very dry conditions occurred over much of Europe. Forest fires broke out in many countries. In Portugal 215,000 hectares area of forest were destroyed. This is an area the same size as Luxembourg. It is estimated millions of tonnes of topsoil were eroded in the year after the fires as the protection of the forest cover was removed. This made river water quality poor when the ash and soil washed into rivers.

The satellite image shown in Fig. 1 shows forest fires in southern Portugal and Spain in September 2003. The fires are shown by the red dots and smoke is in white.

Melting glaciers
Extreme snow and glacier-melt in the European Alps led to increased rock and ice falls in the mountains.

Effects of the heatwave

About 15,000 people died due to the heat in France, which led to a shortage of space to store dead bodies in mortuaries. Temporary mortuaries were set up in refrigeration lorries. There were also heat-related deaths in the UK (2,000), Portugal (2,100), Italy (3,100), Holland (1,500) and Germany (300).

Human effects

  • Heat-stroke — normally we sweat, and this keeps us cool on hot days. On very hot days our bodies may not be able to keep cool enough by sweating alone, and our core body temperature may rise. This can lead to headaches, dizziness and even death.
  • Dehydration — this is the loss of water from our bodies. It can cause tiredness and problems with breathing and heart rates.
  • Sunburn — damage to the skin which can be painful and may increase the risks of getting skin cancer.
  • Air pollution — it is thought that one third of the deaths caused by the heatwave in the UK were caused by poor air quality.
  • Drowning — some people drowned when trying to cool off in rivers and lakes.

The Met Office provides the Department of Health with heatwave warnings (Heat-Health Watch) to prepare the NHS, health professionals, carers and the general public for the effects of extreme heat.

Summers as hot as 2003 could happen every other year by the year 2050 as a result of climate change due to human activities.

Environment and social effects

  • Water supplies — drinking water supplies were affected in some parts of the UK and hosepipe bans introduced.
  • Tourism — many parts of the UK reported increased levels of tourism as people decided to holiday in the UK while the weather was unusually dry and hot.
  • Agriculture — many chickens, pigs and cows died during the heat in Europe and crops failed in the dry conditions. This led to higher food prices. It is thought to have cost European farming 13.1 billion euros.
  • Transport — some railway tracks buckled in the heat. The London Underground became unbearable. Some road surfaces melted. Low river levels prevented some boats from sailing.
  • The London Eye closed on one day as it became too hot in the cabins.
  • Energy — two nuclear power plants to close down in Germany. These rely on water for cooling in the power generation process.

In pictures

Fig 1. Satellite image.
Fig 1. Satellite image.
A river with low levels of water
A river with low levels of water
A forest fire
A forest fire
Family playing on the beach
Family playing on the beach

Immediate responses to the heatwave

  • France requested aid from the European Union to deal with the effects.
  • Public water supply shortages occurred in several countries, including the UK and Croatia, which led to a temporary ban on using hose pipes.
  • TV news, internet and newspapers informed the public on how to cope with the heat — drinking plenty of water, wearing cool clothing, and staying in the shade in the middle of the day.
  • Network Rail in the UK imposed speed restrictions for trains when the temperature was above 30 °C. This was to help avoid trains derailing when railway lines might have buckled
  • Workers around Europe altered their working hours. Some refuse collectors started earlier to pick up rapidly decomposing rubbish from the streets.

What happened to cause the heatwave?

Weather chart

Fig 2. Weather Chart for midday on 5 August 2003.
Fig 2. Weather Chart for midday on 5 August 2003.

It shows an area of high pressure over most of Western Europe. Air is moving around the high in a clockwise direction, bringing a hot, dry tropical continental air mass to the UK at this time. This pattern occurred for much of the rest of the month. High pressure areas usually bring little cloud and warm conditions in summer.

You can find out more about weather charts in the weather section of the Met Office website.

Satellite imagery
The satellite images below confirm there is very little cloud over most of Europe.

Fig 3. Satellite Image of north-west Europe at 2 p.m. on 5 August.
Fig 3. Satellite Image of north-west Europe at 2 p.m. on 5 August.

Fig. 3 shows a visible satellite image of north-west Europe at 2 p.m. on 5 August. Visible satellites show what you would see if you were in space looking down at Earth. White areas show were there is cloud, the brighter the shading the deeper the cloud. The dark areas show cloud free areas. On Figure 12, the darker areas over most of Europe show the area has thin or little cloud.

Fig 4. Satellite Image for north-west Europe at 2 p.m. on 5 August.
Fig 4. Satellite Image for north-west Europe at 2 p.m. on 5 August.

Fig. 4 shows an infrared satellite image for north-west Europe at 2 p.m. on 5 August. Infrared satellite images measure the temperature of the cloud or ground surface. The dark areas show surfaces that are warm and where there is no cloud. The whiter shading indicates cold cloud. The darker the shading of the land, the hotter it is.

 

You can find out more about satellites on the MetLink website.

Maximum temperatures
Many parts of Europe saw their temperature records broken during this summer, including the UK. A sweltering 39 °C was recorded in Brogdale in Kent on 10 August 2003, a record high which still stands today.

European rainfall
Rainfall over much of Europe was below what is normally expected during the months of June, July and August. The long-lasting high pressure system tended to reduce the amount of rain that fell.

As a result of the European heatwave:

  • A joint Met Office/Department of Health project called the Heat-Health Watch now gives advanced warning of UK hot. weather. It operates every summer from 1 June to 15 September.
  • The French government has made efforts to improve its prevention, surveillance and alert system for people such as the elderly living alone.

Further information on the Met Office main site
Met Office Event Summary

Further information on other websites
BBC News articles on the August 2003 European heatwave

Web page reproduced with the kind permission of the Met Office

Adaptation Strategies

Question to consider: Adaptation to climate change needs to be addressed in all urban policies. Discuss.

PDF download

 

 

wg2
Climate change adaptation as an iterative risk management process with multiple feedbacks. People and knowledge shape the process and its outcomes. Assessment of the widest possible range of potential impacts, including low probability risks with major consequences, is central to understanding risk management strategies. Monitoring and learning are important components of effective adaptation.WG2 Summary for Policy Makers Figure 3.

Summary:

  • Adaptation is the process of adjustment to actual or expected climate change and its effects. In human systems, adaptation seeks to moderate or avoid harm or exploit beneficial opportunities. In some natural systems, human intervention may facilitate adjustment to expected climate and its effects.
  • Throughout history, people and societies have adjusted to and coped with climate, climate variability and extremes with varying degrees of success.
  • For many indigenous and rural communities, lay knowledge is critical to adapting to environmental changes including climate change as livelihood activities such as herding, hunting, fishing and farming are connected to and dependent on weather and climate.
  • Adaptation is becoming embedded in some planning processes, with a focus on incremental adjustments and co-benefits.  In particular, Governments are starting to develop adaptation plans and policies and to integrate climate change considerations into broader development plans.
  • Responding to climate related risks involves decision making in a changing world, where the timing and severity of climate change impacts are uncertain and there are limits to the effectiveness of adaptation.
  • Adaptation choices now will affect the risk of climate change throughout the 21st century.

Case Studies

The impact of 3 urban policies in Paris on climate change adaptation and mitigation

Return to main menu

Further Information

Could economic approaches bias adaptation policy and decisions against the interests of the poor, vulnerable populations, or ecosystems?

WG2 Summary for Policy Makers, Figure 5. 
Maximum speeds at which species can move across landscapes. Human interventions, such as habitat fragmentation, can change the speeds of movement. The coloured horizontal lines show the speeds at which temperatures are expected to move across landscapes according to different projected warmings – RCP8.5 being a scenario where greenhouse emissions are high and the world warms most quickly. Species with maximum speeds below each line are expected to be unable to track warming in the absence of human intervention (such as assisted migration). They may still be able to adapt to new climates. The numbers of those which can neither move nor adapt will fall.WG2 Summary for Policy Makers, Figure 5.
WG2 Chapter 16, Figure 1.
A conceptual model of the determinants of acceptable, tolerable and intolerable risks – according to an individual or a society. Adaptation efforts try to keep impacts within the tolerable risk space, although these may be limited by opportunities and constraints. The shape of the shaded regions and dotted lines can change over time as attitudes and capacities change. WG2 Chapter 16, Figure 1.

 

Acceptable risks are those deemed so low that additional efforts at risk reduction, in this case climate adaptation efforts, are not justified. Tolerable risks relate to situations where adaptive, risk management efforts are required and effective for risks to be kept within reasonable levels. The scope of risks that fall within the tolerable area is influenced by adaptation opportunities and constraints. Therefore, the categorization of risks varies across spatial, jurisdictional, and temporal. Opportunities and constraints may be physical, technological, economic, institutional, legal, cultural, or environmental in nature.

Intolerable risks may be related to threats to core social objectives associated with health, welfare, security or sustainability. Risks become intolerable when practicable or affordable adaptation options to avoid escalating risks become unavailable. Therefore, a limit is a point when an intolerable risk must be accepted; the objective itself must be relinquished; or some adaptive transformation must take place to avoid intolerable risk. Such a discontinuity may take several forms such as individual’s decision to relocate, an insurance company’s decision to withdraw coverage, or a species’ extinction. The alternative to such discontinuities is an escalating and unmediated risk of losses. While individuals have their own perspectives about what are acceptable, tolerable or intolerable risks, collective judgements about risk are also codified through mechanisms such as engineering design standards, air and water quality standards, and legislation that establishes goals for regulatory action. There are also international agreements that establish norms and rights relevant to climate change risks, such as the Universal Declaration of Human Rights, the International Covenant on Civil and Political Rights, and the International Covenant on Economic, Social and Cultural Rights. Further, these high level responses often shape the constraints and opportunities to adaptation and responses to risk at lower levels through the distribution of resources, institutional design, and support of capacity development. If these risks and discontinuities have global-scale consequences, they can be linked to ‘key vulnerabilities’ to climate change. Consistent with our framing of adaptation limits, such key vulnerabilities would need to be assessed in terms of the limits they imply for specific social actors, species and ecosystems.

WG2 Chapter 17, Figure 1.
The narrowing of adaptation from the space of all possible adaptations (pale yellow) to what will be done (blue). The factors written in black show the constraints on the size of the circle, i.e. the factors preventing the blue circle being as large as the pale yellow one. WG2 Chapter 17, Figure 1.

 

A number of factors will limit strategy adoption and preclude elimination of all climate change effects. The first outside circle represents the “adaptation needs”, i.e. the set of adaptation actions that would be required to avoid any negative effect (and capture all positive effects) from climate change. It can be reduced by climate change mitigation, i.e. by limiting the magnitude of climate change.

The second circle represents the subset of adaptation actions that are possible considering technical and physical limits. Improving what can be done, for instance through research and development, can expand this circle. The area between the first and second circles is the area of “unavoidable impacts” that one cannot adapt to (for instance, it is impossible to restore outdoor comfort under high temperature). The third circle represents the subset of adaptation actions that are desirable considering limited resources and competing priorities: some adaptation actions will be technically possible, but undesirable because they are too expensive and there are better alternative ways of improving welfare (e.g., investing in health or education). This circle can be expanded through economic growth, which increases resources that can be dedicated to adaptation. Finally, the last circle represents what will be done, taking into account the fact that market failures or practical, political, or institutional constraints will make it impossible to implement some desirable actions. The area between the first and the last circles represents residual impacts (i.e. the impacts that will remain after adaptation, because adapting to them is impossible, too expensive, or impossible due to some barriers).

Key regional risks from climate change and the potential for reducing risks through adaptation and mitigation

WG2 Assessment box spm2 table 1: AfricaAsiaAustralasiaCentral/ South AmericaEuropeNorth AmericaOceanPolar RegionsSmall Islands, Key.

Could economic approaches bias adaptation policy and decisions against the interests of the poor, vulnerable populations, or ecosystems?

(WG2 FAQ 17.2)

A narrow economic approach can fail to account adequately for such items as ecosystem services and community value systems, which are sometimes not considered in economic analysis or undervalued by market prices, or for which data is insufficient. This can bias decisions against the poor, vulnerable populations, or the maintenance of important ecosystems. For example, the market value of timber does not reflect the ecological and hydrological functions of trees nor the forest products whose values arise from economic sectors outside the timber industry, like medicines. Furthermore some communities value certain assets (historic buildings, religious sites) differently than others. Broader economic approaches, however, can attach monetary values to non-market impacts, referred to as externalities, placing an economic value on ecosystem services like breathable air, carbon capture and storage (in forests and oceans) and usable water. The values for these factors may be less certain than those attached to market impacts, which can be quantified with market data, but they are still useful to provide economic assessments that are less biased against ecosystems.
But economic analysis, which focuses on the monetary costs and benefits of an option, is just one important component of decision making relating to adaptation alternatives, and final decisions about such measures are almost never based on this information alone. Societal decision making also accounts for equity – who gains and who loses – and for the impacts of the measures on other factors that are not represented in monetary terms. In other words, communities make decisions in a larger context, taking into account other socioeconomic and political factors. What is crucial is that the overall decision-framework is broad, with both economic and non-economic factors being taken into consideration. A frequently used decision-making framework that provides for the inclusion of economic and non-economic indicators to measure the impacts of a policy, including impacts on vulnerable groups and ecosystems, is multicriteria analysis (MCA). But as with all decision making approaches, the a challenge for MCA and methods like it is the subjective choices that have to be made about what weights to attach to all the relevant criteria that go into the analysis, including how the adaptation measure being studied impacts poor or vulnerable populations, or how fair it is in the distribution of who pays compared to who benefits.

The impact of 3 urban policies in Paris on climate change adaptation and mitigation

Urban policies have many goals, such as enhancing the quality of life and the city’s economic competitiveness by means of affordable housing and office space, amenities and efficient public services.

They also have social objectives aimed at poverty and social segregation issues, safety and security, and public health and environmental goals, such as reducing air and water pollution and preserving natural areas. Urban policies now also face new challenges from climate change, including adaptation and mitigation needs.

Five possible policy goals:

  • Climate change mitigation: reducing greenhouse gas emissions (from transport, heating and air conditioning).
  • Adaptation and natural risk reduction: reducing the number of people living in flood prone areas.
  • Natural area and biodiversity protection: minimising the total urbanised area.
  • Housing affordability: access to affordable housing has impacts on the quality of life and competitiveness of a city.
  • Policy neutrality: all geographical areas benefit equally from policies.

The graph below shows the effectiveness of 3 policies in Paris as measured against these policy goals. The three policies are:

1) a greenbelt policy,
2) a public transport subsidy and
3) a zoning policy to reduce the risk of flooding with building prohibited in flood prone areas.

WG2 Chapter 17, figure 3.
Consequences of three policies in the Paris agglomeration: a greenbelt policy, a public transport subsidy and a zoning policy to reduce the risk of flooding (building prohibited in flood prone areas). The axes are orientated such that moving towards the edge of the plot represents a positive outcome. WG2 Chapter 17, figure 3.

By implementing all three policies, the outcome, considering both positive and negative impacts on the five policy goals, is better than a ‘do nothing scenario’ measured against the five policy goals. Therefore, climate goals can be reached more efficiently and with higher social acceptability, if they are implemented through taking into account existing strategic urban planning, rather than by creating new, independent climate-specific plans.  

 

 

 

 

Additional Source:

Trade-offs and synergies in urban climate policies, V. Viguié & S. Hallegatte, Nature Climate Change 2, 334–337 (2012), doi:10.1038/nclimate1434

national centre for Atmospheric Science logo
RMets logo
Royal Geographical Society Logo

CloudWheel Cutout

We have made a cloud wheel that can be cut out and used to identify clouds. Simply download the pdf, cut out the two circles, fasten together with a split pin and use to identify clouds.

Download Cloudwheel >>

CloudWheel Cut Out

Or, if you’d like a simpler version, use our Cloud bookmark.

Or, you can buy a laminated cloud identification key, produced in conjunction with the Field Studies Council, from our shop.

Clouds

Useful links

Download our Metlink Bookmarkcloud wheel or cloud chart as a cloud identification chart.

Does rain always come from dark clouds? Use our colour chart to find out. Or, use a home made cyanometer to see how blue the sky is, and link it to art or to discussions about why the sky is blue, and how pollution affects it.

Which way are the clouds moving? You can use the OPAL guide to making a nephoscope for this.

Cloudiness – you could either record as ‘Clear sky, mostly clear, mostly cloudy or overcast’, or record in oktas, using a cloud mirror (using a ruler, draw a grid of lines onto a square mirror so that you have 16 equal size boxes; look at the sky with the mirror. How many boxes are mostly cloudy? Divide by 2 to give oktas and repeat for different bits of the sky to get an average).cloud mirror

Experiments demonstrate clouds forming in the Classroom from Physics Education, 2012, Catalyst article on Cloud SeedingPhysics Review article on Clouds, or have a look at our Experiments and Demonstrations page for experiments which demonstrate how clouds can look dark from below but white from above, or how to make a hygrometer to measure air humidity.

For a deeper understanding of how and where clouds form, have a look at our exercise using height/ temperature graphs to investigate atmospheric stability, lapse rates and cloud formation with a worksheet for students with an introductory PowerPoint or this paper.

What causes clouds
Types of clouds
Low clouds
Medium clouds
High clouds
What influences the colour of clouds?
Why do clouds stop growing upwards?
Why are there no clouds on some days?
Measuring clouds
The formation of precipitation
The nature of clouds
Types of cloud
Cumulus
Cumulonimbus
Stratus
Stratocumulus
Altocumulus
Altostratus
Nimbostratus
Cirriform clouds
Short-answer questions

What causes clouds

A cloud is defined as ‘a visible aggregate of minute droplets of water or particles of ice or a mixture of both floating in the free air’. Each droplet has a diameter of about a hundredth of a millimetre and each cubic metre of air will contain 100 million droplets. Because the droplets are so small, they can remain in liquid form in temperatures of -30 °C. If so, they are called supercooled droplets.

Clouds at higher and extremely cold levels in the atmosphere are composed of ice crystals – these can be about a tenth of a millimetre long.

Clouds form when the invisible water vapour in the air condenses into visible water droplets or ice crystals. For this to happen, the parcel of air must be saturated, i.e. unable to hold all the water it contains in vapour form, so it starts to condense into a liquid or solid form. There are two ways by which saturation is reached.

(a) By increasing the water content in the air, e.g. through evaporation, to a point where the air can hold no more.

(b) By cooling the air so that it reaches its dew point – this is the temperature at which condensation occurs, and is unable to ‘hold’ any more water. Figure 1 shows how there is a maximum amount of water vapour the air, at a given temperature, can hold. In general, the warmer the air, the more water vapour it can hold. Therefore, reducing its temperature decreases its ability to hold water vapour so that condensation occurs.

Graph plotting temperature and vapour pressure
Fig 1: There is a maximum amount of water vapour the air, at a given temperature, can hold

Method (b) is the usual way that clouds are produced, and it is associated with air rising in the lower part of the atmosphere. As the air rises it expands due to lower atmospheric pressure, and the energy used in expansion causes the air to cool. Generally speaking, for each 100 metres which the air rises, it will cool by 1 °C, as shown in Figure 2. The rate of cooling will vary depending on the water content, or humidity, of the air. Moist parcels of air may cool more slowly, at a rate of 0.5 °C per 100 metres.

graph plotting height and temperature
Fig 2: For each 100 metres which the air rises, it will cool by 1 °C

Therefore, the vertical ascent of air will reduce its ability to hold water vapour, so that condensation occurs. The height at which dew point is reached and clouds form is called the condensation level.

There are five factors which can lead to air rising and cooling.

1. Surface heating. The ground is heated by the sun which heats the air in contact with it causing it to rise. The rising columns are often called thermals.

2. Topography. Air forced to rise over a barrier of mountains or hills. This is known as orographic uplift.

3. Frontal. A mass of warm air rising up over a mass of cold, dense air. The boundary is called a ‘front’.

4. Convergence. Streams of air flowing from different directions are forced to rise where they meet.

5. Turbulence. A sudden change in wind speed with height creating turbulent eddies in the air.

Another important factor to consider is that water vapour needs something to condense onto. Floating in the air are millions of minute salt, dust and smoke particles known as condensation nuclei which enable condensation to take place when the air is just saturated.

Types of clouds

In 1803 a retail chemist and amateur meteorologist called Luke Howard proposed a system which has subsequently become the basis of the present international classification. Howard also become known by some people as ‘the father of British meteorology’, and his pioneering work stemmed from his curiosity into the vivid sunsets in the late 18th century following a series of violent volcanic eruptions. They had ejected dust high up into the atmosphere, thereby increasing the amount of condensation nuclei, and producing spectacular cloud formations and sunsets.

Howard recognised four types of cloud and gave them the following Latin names.

Cumulus  heaped or in a pile

Stratus  in a sheet or layer

Cirrus  thread-like, hairy or curled

Nimbus  a rain bearer

If we include another Latin word altum meaning height, the names of the 10 main cloud types are all derived from these five words and based upon their appearance from ground level and visual characteristics.

The cloud types are split into three groups according to the height of their base above mean sea level. Note that ‘medium’ level clouds are prefixed by the word alto and ‘high’ clouds by the word cirro (see Table 1). All heights given are approximate above sea level in mid-latitudes. If observing from a hill top or mountain site, the range of bases will accordingly be lower.

Table 1: The 10 main cloud type
Low clouds
Surface – 7,000 ft
Medium clouds
7,000 – 17,000 ft
High clouds
17,000 – 35,000 ft
Cumulus
Altocumulus
Cirrus
Cumulonimbus
Altostratus
Cirrostratus
Stratus
Nimbostratus
Cirrocumulus
Stratocumulus
 
 

 

 

Low clouds

Cumulus (Cu)
Height of base: 1,200-6,000 ft
Colour: White on its sunlit parts but with darker undersides.
Shape: This cloud appears in the form of detached heaps. Shallow cumulus may appear quite ragged, especially in strong winds, but well formed clouds have flattened bases and sharp outlines. Large cumulus clouds have a distinctive ‘cauliflower’ shape.
Other features: Well developed cumulus may produce showers.

Cumulus clouds
Fig 3: Cumulus
photo © R.K.Pilsbury

Cumulonimbus (Cb)
Height of base: 1,000-5,000 ft
Colour: White upper parts with dark, threatening undersides.
Shape: A cumulus-type cloud of considerable vertical extent. When the top of a cumulus reaches great heights, the water droplets are transformed into ice crystals and it loses its clear, sharp outline. At this stage the cloud has become a cumulonimbus. Often, the fibrous cloud top spreads out into a distinctive wedge or anvil shape.
Other features: Accompanied by heavy showers, perhaps with hail and thunder. By convention Cb is usually reported if hail or thunder occur, even if the observer does not immediately recognise the cloud as Cb (it may be embedded within layers of other cloud types).

Cumulonimbus clouds
Fig 4: Cumulonimbus
photo © R.K.Pilsbury

Stratus (St)
Height of base: surface-1,500 ft
Colour: Usually grey.
Shape: May appear as a layer with a fairly uniform base or in ragged patches, especially during precipitation falling from a cloud layer above. Fog will often lift into a layer of stratus due to an increase in wind or rise in temperature. As the sun heats the ground the base of stratus cloud may rise and break becoming shallow cumulus cloud as its edges take on a more distinctive form.
Other features: If thin, the disc of the sun or moon will be visible (providing there are no other cloud layers above). If thick, it may produce drizzle or snow grains.

Stratus clouds
Fig 5: Stratus
photo © C.S.Broomfield

Stratocumulus (Sc)
Height of base: 1,200-7,000 ft
Colour: Grey or white, generally with shading.
Shape: Either patches or a sheet of rounded elements but may also appear as an undulating layer. When viewed from the ground, the size of individual elements will have an apparent width of more than 5° when at an elevation greater than 30° (the width of three fingers at arm’s length).
Other features: May produce light rain or snow. Sometimes the cloud may result from the spreading out of cumulus, giving a light shower.

stratocumulus clouds
Fig 6: Stratocumulus
photo © J.F.P Galvin

Medium clouds

Altocumulus (Ac)
Height of base: 7,000-17,000 ft
Colour: Grey or white, generally with some shading.
Shape: Several different types, the most common being either patches or a sheet of rounded elements but may also appear as a layer without much form. When viewed from the ground, the size of individual elements will have an apparent width of 1 to 5° when at an elevation greater than 30° (the width of one to three fingers at arm’s length). Even if the elements appear smaller than this the cloud is still classified altocumulus if it shows shading.
Other features: Occasionally some slight rain or snow, perhaps in the form of a shower may reach the ground. On rare occasions, a thunderstorm may occur from one type of Ac known as altocumulus castellanus – so called because in outline, the cloud tops look like a series of turrets and towers along a castle wall.

altocumulus clouds
Fig 7: Altocumulus
photo © C.S.Broomfield

Altostratus (As)
Height of base: 8,000-17,000 ft
Colour: Greyish or bluish.
Shape: A sheet of uniform appearance totally or partly covering the sky.
Other features: Sometimes thin enough to reveal the sun or moon vaguely, as through ground glass. Objects on the ground do not cast shadows. May give generally light rain or snow, occasionally ice pellets, if the cloud base is no higher than about 10,000 ft.

altostratus clouds
Fig 8: Altostratus
photo © C.S.Broomfield

Nimbostratus (Ns)
Height of base: 1,500-10,000 ft
Colour: Dark grey.
Shape: A thick, diffuse layer covering all or most of the sky.
Other features: Sun or moon always blotted out. Accompanied by moderate or heavy rain or snow, occasionally ice pellets. Although classed as a medium cloud, its base frequently descends to low cloud levels. May be partly or even totally obscured by stratus forming underneath in precipitation.

nimbostratus clouds
Fig 9: Nimbostratus
photo © C.S.Broomfield

High clouds

Cirrus (Ci)
Height of base: 17,000-35,000 ft
Colour: Composed of ice crystals, therefore white.
Shape: Delicate hair-like filaments, sometimes hooked at the end; or in denser, entangled patches; or occasionally in parallel bands which appear to converge towards the horizon.
Other features: The remains of the upper portion of a cumulonimbus is also classified as cirrus.

cirrus
Fig 10: Cirrus
photo © R.K.Pilsbury

Cirrocumulus (Cc)
Height of base: 17,000-35,000 ft
Colour: Composed of ice crystals, therefore white.
Shape: Patches or sheet of very small elements in the form of grains or ripples or a honeycomb. When viewed from the ground, the size of individual elements will have an apparent width of less than 1° when at an elevation greater than 30° (no greater than the width of a little finger at arm’s length).
Other features: Sometimes its appearance in a regular pattern of ‘waves’ and small gaps may resemble the scales of a fish, thus giving rise to the popular name ‘mackerel sky’ (this name may also be attributed to high altocumulus clouds).

cirrocumulus
Fig 11: Cirrocumulus
photo © R.K.Pilsbury

Cirrostratus (Cs)
Height of base: 17,000-35,000 ft
Colour: Composed of ice crystals, therefore white.
Shape: A transparent veil of fibrous or smooth appearance totally or partly covering the sky.
Other features: Thin enough to allow the sun to cast shadows on the ground unless it is low in the sky. Produces halo phenomena, the most frequent being the small (22°) halo around the sun or moon ≬ a little more than the distance between the top of the thumb and the little finger spread wide apart at arm’s length.

cirrostratus
Fig 12: Cirrostratus
photo © R.K.Pilsbury

Condensation trails (contrails)
These are thin trails of condensation, formed by the water vapour rushing out from the engines of jet aircraft flying at high altitudes. They are not true clouds, but can remain in the sky for a long time, and grow into cirrus clouds.

contrails
Fig 13: Cirrus with contrails
photo © S D Burt

What influences the colour of clouds?

Light from both the sky and from clouds is sunlight which has been scattered. In the case of the sky, the molecules of air (nitrogen and oxygen) undertake the scattering, but the molecules are so small that the blue part of the spectrum is scattered more strongly than other colours.

The water droplets in the cloud are much larger, and these larger particles scatter all of the colours of the spectrum by about the same amount, so white light from the sun emerges from the clouds still white.

Sometimes, clouds have a yellowish or brownish tinge – this is a sign of air pollution.

Why do clouds stop growing upwards?

Condensation involves the release of latent heat. This is the ‘invisible’ heat which a water droplet ‘stores’ when it changes from a liquid into a vapour. Its subsequent change of form again releases enough latent heat to make the damp parcel of air warmer than the air surrounding it. This allows the parcel of air to rise until all of the ‘surplus’ water vapour has condensed and all the latent heat has been released.

Therefore, the main reason which stops clouds growing upwards is the end of the release of latent heat through the condensation process. There are two other factors which also play a role. Faster upper atmospheric winds can plane off the tops of tall clouds, whilst in very high clouds, the cloud might cross the tropopause, and enter the stratosphere where temperatures rise, rather than decrease, with altitude. This thermal change will prevent further condensation.

Why are there no clouds on some days?

Even when it is very warm and sunny, there might not be any clouds and the sky is a clear blue. The usual reason for the absence of clouds will be the type of pressure, with the area being under the influence of a high pressure or anticyclone. Air would be sinking slowly, rather than rising and cooling. As the air sinks into the lower part of the atmosphere, the pressure rises, it becomes compressed and warms up, so that no condensation takes place. In simple terms, there are no mechanisms for clouds to form under these pressure conditions.

Measuring clouds

The cloud amount is defined as ‘the proportion of the celestial dome which is covered by cloud.’ The scale used is eighths, or oktas, with observers standing in an open space or on a rooftop to get a good view or panorama of the sky.

Complete cloud cover is reported as 8 oktas, half cover as 4 oktas, and a completely clear sky as zero oktas. If there is low-lying mist or fog, the observer will report sky obscured.

The reporter will also report the amount of each cloud level – 2 oktas of cumulus and 3 oktas of cirrus, etc.

The frequent passage of depressions across the United Kingdom means that the most commonly reported cloud amount is, not surprisingly, 8 oktas. A clear blue sky, i.e. zero oktas, is less common, as often on hot, sunny days, there are small wispy layers of cirrostratus or fine tufts of thin cirrus at high altitudes.

The formation of precipitation

Cooling, condensation and cloud formation is the start of the process which results in precipitation. But not all clouds will produce raindrops or snowflakes – many are so short-lived and small that there are no opportunities for precipitation mechanisms to start.

There are two theories that explain how minute cloud droplets develop into precipitation.

10.1 The Bergeron Findeisen ice-crystal mechanism

If parcels of air are uplifted to a sufficient height in the troposphere, the dew-point temperature will be very low, and minute ice crystals will start to form. The supercooled water droplets will also freeze on contact with these ice nuclei.

The ice crystals subsequently combine to form larger flakes which attract more supercooled droplets. This process continues until the flakes fall back towards the ground. As they fall through the warmer layers of air, the ice particles melt to form raindrops. However, some ice pellets or snowflakes might be carried down to ground level by cold downdraughts.

10.2 Longmuir’s collision and coalescence theory

This applies to ‘warm’ clouds, i.e. those without large numbers of ice crystals. Instead they contain water droplets of many differing sizes, which are swept upwards at different velocities so that they collide and combine with other droplets.

It is thought that when the droplets have a radius of 3 mm, their movement causes them to splinter and disintegrate, forming a fresh supply of water droplets.

This theory allows droplets of varying sizes to be produced, and as shown in the table below, each will have a different terminal (or falling) velocity. 

 

 

Particle radius (mm)
Terminal velocity (m/s)
Cloud
 
 
 
0.001
0.005
0.01
0.5
0.0001
0.0025
0.01
0.25
Drizzle
 
0.1
0.25
0.7
2.0
Rain
 
 
 
 
0.5
1.0
1.5
2.0
2.5
3.9
6.5
8.1
8.8
9.1

Table 2: The terminal velocities of different particle sizes

10.3 Man-made rain

In recent years, experiments have taken place, chiefly in the USA, China and the former USSR, adding particles into clouds that act as condensation or freezing nuclei. This cloud seeding involves the addition into the atmosphere from aircraft of dry ice, silver iodide or other hygroscopic substances. These experiments have largely taken place on the margins of farming areas where rainfall is needed for crop growth, or to divert rain from major events such as the 2008 Beijing Olympics.

The nature of clouds

A classification of clouds was introduced by Luke Howard (1772-1864) who used Latin words to describe their characteristics.
  • Cirrus – a tuft or filament (e.g. of hair)
  • Cumulus – a heap or pile
  • Stratus – a layer
  • Nimbus – rain bearing
clouds
C.S. Broomfield (© Crown Copyright)
There are now ten basic cloud types with names based on combinations of these words (the word ‘alto’, meaning high but now used to denote medium-level cloud, is also used).

Clouds form when moist air is cooled to such an extent that it becomes saturated. The main mechanism for cooling air is to force it to rise. As air rises it expands – because the pressure decreases with height in the atmosphere – and this causes it to cool. Eventually it may become saturated and the water vapour then condenses into tiny water droplets, similar in size to those found in fog, and forms cloud. If the temperature falls below about minus 20 °C, many of the cloud droplets will have frozen so that the cloud is mainly composed of ice crystals.

The main ways in which air rises to form cloud

  1. Rapid local ascent when heated air at the earth’s surface rises in the form of thermal currents (convection).
  2. Slow, widespread, mass ascent where warm moist air is forced to rise above cold air. The region between warm and cold air is called a ‘front’.
  3. Upward motion associated with turbulent eddies resulting from the frictional effect of the earth’s surface.
  4. Air forced to rise over a barrier of mountains or hills.

The first of these tends to produce cumulus-type clouds, whereas the next two usually produce layered clouds. The last can produce either cumulus-type cloud or layered cloud depending upon the state of the atmosphere. The range of ways in which clouds can be formed and the variable nature of the atmosphere give rise to the enormous variety of shapes, sizes and textures of clouds.

Types of cloud

The ten main types of cloud can be separated into three broad categories according to the height of their base above the ground: high clouds, medium clouds and low clouds.

High clouds are usually composed solely of ice crystals and have a base between 18,000 and 45,000 feet (5,500 and 14,000 metres).

  • Cirrus – white filaments
  • Cirrocumulus – small rippled elements
  • Cirrostratus – transparent sheet, often with a halo

Medium clouds are usually composed of water droplets or a mixture of water droplets and ice crystals, and have a base between 6,500 and 18,000 feet (2,000 and 5,500 metres).

  • Altocumulus – layered, rippled elements, generally white with some shading
  • Altostratus – thin layer, grey, allows sun to appear as if through ground glass
  • Nimbostratus – thick layer, low base, dark. Rain or snow falling from it may sometimes be heavy

Low clouds are usually composed of water droplets – though cumulonimbus clouds include ice crystals – and have a base below 6,500 feet (2,000 metres).

  • Stratocumulus – layered, series of rounded rolls, generally white with some shading
  • Stratus – layered, uniform base, grey
  • Cumulus – individual cells, vertical rolls or towers, flat base
  • Cumulonimbus – large cauliflower-shaped towers, often ‘anvil tops’, sometimes giving thunderstorms or showers of rain or snow

Most of the main cloud types can be subdivided further on the basis of shape, structure and degree of transparency.

Cumulus

Cumulus clouds are often said to look like lumps of cotton wool. With a stiff breeze, they march steadily across the sky; their speed of movement gives a clue to their low altitude. Cumulus clouds occasionally produce light showers of rain or snow.

Cumulus clouds over water

© Steve Jebson

Cumulus clouds over land

© Steve Jebson

Typically, the base of cumulus clouds will be about 2,000 feet (600 metres) above ground in winter, and perhaps 4,000 feet (1,200 metres) or more on a summer afternoon. Individual clouds are often short-lived, lasting only about 15 minutes. They tend to form as the ground heats up during the day and become less frequent as the sun’s heat wanes towards evening.

The cause of small cumulus clouds is usually convection. Heat from the sun warms the ground, which in turn warms the air above. If a ‘parcel’ of warm air is less dense than the cooler air around it or above it, the ‘parcel’ of air starts to rise – this is known as a ‘thermal’. As it rises it expands and cools, and, if cooled sufficiently, the water vapour condenses out as tiny cloud droplets. A cumulus cloud is born.

The air within the cloud will continue to rise until it ceases to be buoyant. On some sunny days there is insufficient moisture or instability for moisture to form.

In hilly regions, a high, south-facing slope acts as a good source of thermals, and therefore of cumulus. Occasionally, a power station or factory will produce a cloud of its own. 

When air rises in thermals there must be compensating downdraughts nearby. These create the clear areas between cumulus clouds and make it easier for glider pilots to find the thermals that they can use to gain height.

Cumulonimbus

Just as cumulus is heaped cloud, so cumulonimbus is a heaped rain cloud (nimbus means rain).

Cumulonimbus
© N. Elkins

In many ways the rain-bearing variety can be considered as a bigger, better-organised version of the cumulus. A cumulonimbus may be 10 km across and extend 10 km above the ground. This compares with a cumulus cloud which is typically a few hundred metres across and reaches a height of only a few kilometres. Instead of a ball of cotton wool, a cumulonimbus will resemble a huge cauliflower of sprouting towers and bulging turrets.

But there is one important structural difference in that the uppermost levels of the cumulonimbus have turned to ice and become fibrous in appearance, whereas cumulus clouds are composed entirely of water droplets. This icy section at the top may flatten out into an ‘anvil’ shape when the cloud is fully developed. When it reaches this stage, the base is usually dark, and there will be showers of rain or, sometimes, hail. In winter, the showers may be of sleet or snow. The showers are often quite heavy and may be accompanied by lightning and thunder.

Sometimes cumulonimbus will be ’embedded’ or half hidden among other clouds. On other occasions they will be well separated and the ‘anvil’ may well be visible many miles away. Cumulonimbus clouds may be seen at any time of the day, but are most common inland during the afternoon in spring and summer, and frequently occur in the tropics. They develop where convection is at its strongest and most organised.

The lifetime of a cumulonimbus is usually less than one hour.

There are exceptions though. The ‘Hampstead storm’ of 14 August 1975 was an example of a cumulonimbus cloud that managed to keep regenerating itself over one small area of London. About 170 mm of rain fell in three hours, causing severe flooding.

Stratus

Stratus over hills

© Jim Galvin

Stratus over buildings

© A. Bushell

Stratus is a low-level layer cloud (not to be confused with altostratus and cirrostratus, which are much higher). In appearance, it is usually a featureless grey layer. Sometimes, when a sheet of stratus is affecting an area, the cloud base will be right down to the ground and will cause fog. However, the usual base is between the ground and 1,000 feet (300 metres), which means that hilltops may be obscured by cloud. Sometimes stratus will produce drizzle or light snow, particularly over hills.

Perhaps the most important indication of its low altitude is its apparent rapid movement across the sky in any wind stronger than a flat calm. For example, a stratus cloud at 500 feet (150 metres) moving at 20 miles per hour will appear to move much faster than altostratus with its base at 10,000 feet (3,000 metres) moving at 60 miles per hour.

An approximate guide to the height of stratus may be gained by measuring the relative humidity and subtracting it from 100. The resulting number gives some idea of the height of the low cloud in hundreds of feet. For example, 94% relative humidity would indicate that the stratus is about 600 feet (180 metres) above the ground. 

Stratus forms as the result of condensation in moist air at low levels due to cooling. The cooling may be caused in a number of ways:

  1. lifting of air over land due to hills or ‘bumping’ over rough ground;
  2. warm air moving over a cold sea. If the cloud moves in over the land, it will readily cover any relatively high ground. In some cases, the base of the cloud falls to the sea surface, causing fog. This may drift in over the coast and is called sea fog, though it goes by the name of haar in the north and east of Scotland and fret in the east of England;
  3. temperature falling over land at night. The air may have been brought inland during the day on a sea breeze. There needs to be some wind, otherwise the cooling may lead to radiation fog.

Stratocumulus

Stratocumulus clouds usually form between 1,000 and 6,500 feet (300 and 2,000 metres).

Stratocumulus
© Jim Galvin

Stratocumulus will often give a sheet of almost total cloud cover, with perhaps one or two breaks. The cloud elements are rounded and almost join up. Occasionally, the sheet is composed of a series of more or less parallel rolls, which often, but not always, lie ‘across the wind’. Stratocumulus sometimes produces light falls of rain or snow.

Stratocumulus is formed by weak convection currents, perhaps triggered by turbulent airflows aloft. The convection affects a shallow zone because dry, stable air above the cloud sheet prevents further upward development.

Sometimes there are huge sheets of stratocumulus covering thousands of square kilometres around the flanks of a high pressure system, especially over the oceans. The weather below such sheets tends to be dry, but it may be rather dull if the cloud is two or three thousand feet thick.

Altocumulus

Altocumulus clouds usually form between 6,500 and 17,000 feet (2,000 and 5,000 metres) and are referred to as medium level clouds.

Altocumulus
© Steve Jebson

In most cases, there is little difference between the properties of stratocumulus and altocumulus, since both are composed of water droplets and are normally limited in vertical extent. The deciding factor between stratocumulus and altocumulus normally comes down to height as both types are formed in the same way.

Altocumulus also provides a sort of dappled pattern, but, since it is at a greater altitude, the cloud elements look smaller. One significantly different form is altocumulus castellanus, which is like a vigorous medium-level cumulus , sometimes with rain falling from their base, known as trailing virga. This type of cloud is sometimes an indication that thunderstorms will follow

Altostratus

Altostratus clouds normally have a base between 8,000 and 17,000 feet (2,500 and 5,000 metres).

Altostratus © C. S. Broomfield

Altostratus appears as a uniform sheet either totally or partially covering the sky. Sometimes it is thin enough to just reveal the sun or moon. The sun appears as if through ground glass but shadows are not visible on the ground. Sometimes, if the base is below 10,000 feet (3,000 metres) it may give light rain or snow.

 

Nimbostratus

Nimbostratus
© C. S. Broomfield

Nimbostratus clouds are found between 1,500 and 10,000ft (450 and 3,000 metres).

Nimbostratus forms a thick, diffuse layer of dark grey cloud covering all or most of the sky, which always obscures the sun or moon. It is accompanied by moderate or heavy rain or snow, occasionally ice pellets. Although classed as a medium cloud, its base frequently descends to low cloud levels. Nimbostratus may be partly or even totally obscured by stratus forming underneath in precipitation.

Cirriform clouds

Cirriform clouds (i.e. clouds from the cirrus family) are found at high altitude, usually above 20,000 feet (6,000 metres). They are composed of ice crystals. Three types of cloud make up the group: cirrus, cirrostratus and cirrocumulus.

CirrusCirrus itself is very common in the British Isles and throughout most of the world. It is thin, wispy and white in appearance, and its name, coming from the Latin word for ‘tuft of hair’, gives a good description of the cloud. Another name for the cloud, ‘mares tails’, also conjures up an accurate image. Cirrus may be hooked or straight depending on the airflow aloft. Sometimes it comes as a very dense patch which is left over from the ‘anvil’ cloud of a cumulonimbus that has disappeared. On other occasions, cirrus may be quite extensive when associated with a jet stream – the cloud can then be seen moving across the sky, despite its great altitude. Aircraft condensation trails are a form of man-made cirrus. They can sometimes be seen in ‘historical’ films, to the delight of film buffs who enjoy spotting technical inaccuracies.

CirrostratusCirrostratus is a fairly uniform sheet of thin cloud through which the sun or moon can be seen. Sometimes, if the cloud is thin, a bright ring of light (called a halo) surrounds the sun or moon. A layer of cirrostratus is often an indication of a deterioration in the weather.

CirrocumulusCirrocumulus is often present in small amounts along with cirrus, but rarely does it dominate the sky. On those occasions when it is widespread, a beautiful spectacle is created, especially at sunset. The individual clouds appear very small – often tiny rows of roughly spherical pear-like cloud elements. Sometimes they occur in undulating patterns like tiny ripples.

This information sheet is based on a series of articles written by Dick File that appeared in The Guardian. Web page reproduced with the kind permission of the Met Office

Short-answer questions

1. Make concise definitions of the following terms.
(a) Condensation.
(b) Dew point.
(c) Supercooled.
(d) Humidity.

2. Explain the two ways by which parcels of air can reach saturation.

3. Outline the five factors that will cause parcels of air to
rise and cool.

4. Match up the descriptions in list B with the correct term
in list A:
List A: Cumulus; Cirrus; Stratus; Nimbus.
List B: Rain bearer; Heaped; Thread-like or hairy; Sheets or layers.

5. Which of the following are correct statements?
(i)   Low clouds form up to 10,000
feet above the surface.
(ii)  High clouds form between 17,000
and 35,000 feet above the surface.
(iii) Altocumulus and altostratus are two types
of high cloud.
(iv) Nimbostratus is a medium-level cloud.
(v)  Cumulonimbus is a low cloud.

6. Describe the likely characteristics of the following cloud
types.
(a) Cumulus
(b) Stratus
(c) Cirrus

7. With which cloud formations would you associate the phrase
‘mackerel sky’?

8. What weather conditions might follow the appearance of altocumulus
castellanus?

9. What are contrails? What clouds might they produce over time?

10. Why do most clouds appear white?

11. What prevents clouds from building up to very high levels
in the troposphere?

12. Under what conditions might you find warm, sunny weather,
but no clouds forming?

13. Outline how clouds are measured by observers.

14. Which amount of cloud cover is most commonly observed in
the British Isles? Explain why?

15. Why is it quite rare to observe zero oktas of cloud cover?

16. Explain the two theories that explain how cloud droplets
turn into precipitation.

17. What is cloud seeding?

Web page reproduced with the kind permission of the Met Office

Cumulus clouds over water
Cumulus clouds over land
Stratus over hills
Stratus over buildings

Global Atmospheric Circulation

Use this Global Atmospheric Circulation practice exercise.

Changes to the Global Atmospheric Circulation as the climate changes.

Other Useful Links

OCR Geography B GCSE

Resources for OCR 2016 Geography B

We are delighted to have worked together with the OCR to develop resources to support this specification – click here to access the resources with links embedded into the scheme of work here.

Other Recommended Resources to Support the Teaching of Weather and Climate within this Specification

1.1
How can weather be hazardous?

a) Why do we have weather extremes?

  • Outline of the global circulation system including the effects of high and low pressure belts in creating climatic zones.
  • How the global circulation of the atmosphere causes extremes in weather conditions in different parts of the world.
  • The extremes in weather conditions associated with wind, temperature and precipitation in contrasting countries.
  • The distribution and frequency of tropical storms and drought, and whether these have changed over time.
  • Outline the causes of the extreme weather conditions associated with tropical storms.
  • Outline the causes of the extreme weather conditions of El Niño/La Niña leading to drought.

a) When does extreme weather become a hazard?

  • Case studies of two contrasting natural weather hazard events arising from extreme weather conditions. The case studies must include a natural weather hazard from each bullet point below:

    There must be one UK based and one non-UK based natural weather hazard event

  • For each chosen hazard event, study the place specific causes (including the extreme weather conditions which led to the event), consequences of and responses to the hazard.

2.1
What evidence is there to suggest climate change is a natural process?

a) What evidence is there for climate change?

b) Is climate change a natural process?

  • Outline the causes of natural climate change including the theories of sun spots, volcanic eruptions and Milankovitch cycles.
  • Investigate the natural greenhouse effect and the impacts that humans have on the atmosphere, including the enhanced greenhouse effect.

c) Why is climate change a global issue?

  • Explore a range of social, economic and environmental impacts of climate change worldwide such as those resulting from sea level rise and extreme weather events. The impacts studied should relate to the 21st century.
  • Explore a range of social, economic and environmental impacts of climate change within the UK such as the impact on weather patterns, seasonal changes and changes in industry. The impacts studied should relate to the 21st century.

4.2
Why should tropical rainforests matter to us?

a) What biodiversity exists in tropical rainforests?

  • The distinctive characteristics of a tropical rainforest ecosystem, including the climate

4.3
Is there more to polar environments than ice?

a) What is it like in Antarctica and the Arctic?

  • Outline the distinctive characteristics of Antarctica and the Arctic, including climate

7.1
How is the UK changing in the 21st century?

a) What does the UK look like in the 21st century?

  • Overview of human and physical geographical characteristics of the UK, including population density, land use, rainfall and relief, and significant issues associated with these characteristics, including water stress and housing shortages.

8.1
Will we run out of natural resources?

a) How has increasing demand for resources affected our planet?

  • Outline the factors leading to demand outstripping supply of food, energy and water.

8.2
Can we feed nine billion people by 2050?

a) What does it mean to be food secure?

  • Understand the term ‘food security’ and the human and physical factors which influence this.

Climate Zones

Climate zones.

Some introductory ideas on Climate zones

Teaching Resources

Lesson 3 – Pritchard.pdf

Data and Image Sources

http://www.viewsoftheworld.net/wp-content/uploads/2014/12/AnnualPrecipitationAnimation.gif

Food Security

ipcc-updates-geography-teachers/#9

Teaching Resources

Data and Image Sources

Water Security

ipcc-updates-for-a-level-geography/security-of-water-supplies/

Teaching Resources

Data and Image Sources

Extreme Weather

Weather records will always be broken!

Further Information

In Depth – Extreme Weather (Met Office)

Teaching Resources

What do we mean by Extreme Weather? Data analysis.

Community experience of extreme weather Fieldwork/ investigation

https://www.rgs.org/schools/teaching-resources/key-stage-five/extreme-weather/

Work scheme on extreme weather including tropical storms

Data and Image Sources

UK Flash Flood Events

An introduction to flooding.

Data and Image Sources

National River Flow Archive http://nrfa.ceh.ac.uk/

Current UK river levels http://www.gaugemap.co.uk/

Tropical Storms

Teaching Resources
Tropical Cyclones Scheme of Work.

Work scheme on extreme weather including tropical storms.

lang_gis_hurricane_task

https://www.metlink.org/teachers/teacher-development/extreme-weather-2/

Data and Image Sources

Drought

https://www.metlink.org/other-weather/weather-hazards/drought/

Teaching Resources

Data and Image Sources

Heat Wave

A case study of the 2003 heat wave.

A case study of the 2013 heat wave.

Teaching Resources

Data and Image Sources

Past Climate Change

Teaching Resources

Past Climate Change teaching resources

Data and Image Sources

Tempest database

Climate Change

Considerably more information can be found at our Climate Change Updates for Geography Teachers pages and in our general past climate change resources/ section.

Teaching Resources

Climate

Climate Change Schools Project

Data and Image Sources

UK climate projections and associated teaching resources

Further KS4 resources.

Link to OCR website for the full specification.

MetLink - Royal Meteorological Society
We use cookies on this site to enhance your user experienceBy clicking any link on this page you are giving your consent for us to set cookies. More info

By clicking any link on this page you are giving your consent for us to set cookies. More info